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A Galerkin scheme is presented for a class of conservative nonlinear dispersive equations,
such as the Camassa–Holm equation and the regularized long wave equation. The scheme
has two advantageous features: first, it is conservative in that it keeps the discrete ana-
logue of the continuous energy conservation property in the original equations; second,
it can be formulated only with cheap H1-elements even if the original equations include
third derivative uxxx. Numerical experiments confirm the stability and effectiveness of
the proposed scheme.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper numerical integration of a class of nonlinear dispersive equations:
ut � uxxt þ jux þ 3uux ¼ cð2uxuxx þ uuxxxÞ; x 2 R; t > 0; ð1Þ
is considered. Eq. (1) describes a wide variety of nonlinear dispersive phenomena depending on the values of j and c. With
j P 0; c ¼ 1, it reduces to the Camassa–Holm equation (CH):
ut � uxxt þ jux ¼ 2uxuxx þ uuxxx � 3uux; ð2Þ
which models unidirectional propagation of shallow water waves [6,7], with u representing the fluid velocity in the x direc-
tion (or equivalently the height of the fluid’s free surface), and j the critical shallow water wave speed. The CH has a bi-Ham-
iltonian structure, is completely integrable [18], and has global solutions [10]. It also has solitary waves, but they are in sharp
. All rights reserved.
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contrast to, for example, those of the Korteweg–de Vries equation, in that the solitary waves become peaked in the limit of
j! 0 (called ‘‘peakons”), which describe in physical context ‘‘wave-breaking” [28]. When j ¼ 0; c 2 R, the equation reduces
to the Dai equation [14]:
ut � uxxt þ 3uux ¼ cð2uxuxx þ uuxxxÞ; ð3Þ
which describes propagation of finite-length and small-amplitude waves in cylindrical compressible hyperelastic rods. In
this case u represents the radial stretch, and c the material constant which, for example, ranges from �29.4760 to 3.4174
[15]. Although this equation looks quite similar to the CH, its solutions behave in completely different manners depending
on c [12,15,30]. For c < 1, solitary waves of the Dai equation are smooth. When c ¼ 1 the equation reduces to the CH equa-
tion with j ¼ 0, and thus solitary waves become peaked. If c exceeds one, the singularities in the solutions become even
stronger such that at some points derivatives are no longer bounded (‘‘cusped”); physically, it expresses the ‘‘rod-breaking.”
Another example of (1) is the so-called regularized long wave (or simply the BBM) equation [3]:
ut � uxxt ¼ �3uux � ux; ð4Þ
which is obtained by setting j ¼ 1; c ¼ 0. In contrast to the preceding two equations, all solutions of the BBM are global, and
solitary waves are smooth.

Motivated by the physical and mathematical relevance of these PDEs, some effort have been already devoted to the
numerical computation of the Eq. (1). Below are such examples. For the CH, several standard pseudospectral schemes
[6,7,23], a finite-difference scheme [21], a specialized scheme using the multi-peakon structure of the equation [22], and
a multi-symplectic scheme [9] have been studied (see also [1]). In the context of Galerkin schemes, quite recently a local
discontinuous Galerkin scheme has been also proposed [29], where its high efficiency and stability have been revealed.
For the BBM, we refer the readers to [16,20] and the references therein. For the Dai equation, we could not find any, which
might be attributed to the fact that the equation itself is quite new (proposed in 1998).

The aim of the present paper is to give a new reliable numerical scheme for Eq. (1), from a different perspective from the
above mentioned numerical studies. The key fact here is that the Eq. (1) has an invariant under appropriate boundary con-
ditions. With numerical analysis in mind, let us choose the periodic boundary condition:
uðx; tÞ ¼ uðxþ L; tÞ; x 2 ð�1;1Þ; t > 0: ð5Þ
Then we see the quantity
�1
2

Z L

0
ju2 þ u3 þ cuu2

x

� �
dx ð6Þ
is strictly preserved along the solution (see Theorem 1). It often corresponds to some physical energies of fluids or rods, and
thus is called the ‘‘energy.” In the present paper, in the purpose of constructing a ‘‘reliable” numerical scheme, we demand
our numerical scheme to keep this energy conservation property in discrete setting. In recent years, such ‘‘energy-conserv-
ing” numerical schemes have drawn much interest and been extensively studied for various PDEs, since they are more likely
to give stabler and qualitatively better computations [4,19,26] (see also [24] for nearly-conservative method for Hamiltonian
PDEs). To the best of the authors’ knowledge, however, so far strictly conserving scheme for (1) has not yet been published in
the literature (except a master’s thesis by Takeya [27] which considered conserving finite-difference schemes for the CH, and
a study on a nearly-conservative multi-symplectic scheme for the CH [9]). Our main idea for constructing a strictly-conser-
vative scheme is to utilize the concept of ‘‘discrete partial derivatives”, which has been introduced in [25] by one of the pres-
ent authors for designing conservative (or dissipative, respectively) Galerkin schemes for certain conservative (dissipative)
PDEs in variational form. It will be shown that with some trick Eq. (1) can be also written in variational form, and the idea
and tools above can be utilized for (1).

In this mission, we further like to demand that our numerical scheme is able to be formulated within the space H1, the
standard first-order Sobolev space, due to the following two reasons. First, simply from the computational perspective, we
hope to keep the possibility of utilizing cheap H1-elements (instead of relatively expensive C1-elements). Second and more
importantly, since the solutions of the target Eq. (1) can develop derivative singularities (e.g. peakons), it seems natural to
work within the space H1 rather than H3 which is seemingly required to treat the third-order Eq. (1). This point seems to
have not been explicitly emphasized in the existing numerical studies, where more or less stronger regularity is implicitly
assumed by using some standard finite-difference or pseudospectral discretization.

With such a goal fixed—an energy-conserving scheme implementable within H1—we face a big difficulty: as far as the
authors know, there has been no H1-formulation of Eq. (1) in the literature that directly gives rise to the energy conservation
property. Although some H1-formulation have been found so far in order to justify peakons (see Section 2), the energy con-
servation property of their H1 solutions can be proved only in so indirect manners that they cannot be followed in discrete
setting. As a solution to this issue, in this paper we present a new H1-formulation of the problem from which the energy
conservation property can be quite easily and directly derived.

The rest of the present paper is organized as follows: In Section 2, mathematical preliminaries regarding the target Eq. (1)
are summarized. Then in Section 3, the proposed scheme is presented, and its properties are discussed. Its application exam-
ples are shown in Section 4 with various numerical experiments that illustrate the effectiveness of the proposed scheme.
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2. Properties of the target equation

Some mathematical properties of the target Eq. (1) are summarized. Let us denote by S the circle of length L, and consider
that the target equation is defined on it. We denote by L2ðSÞ the standard L2 space over S, and by ðf ; gÞ ¼

R L
0 fg dx its asso-

ciated norm. We also denote by HnðSÞ the standard Sobolev space over S.
Eq. (1) can be viewed as a gradient flow:
1� @2

@x2

 !
ut ¼

dG
du

� �
x

; ð7Þ
where
Gðu;uxÞ ¼ �
ju2 þ u3 þ cuu2

x

2
: ð8Þ
The symbol
dG
du
¼ @G
@u
� @

@x
@G
@ux

ð9Þ
denotes the standard variational derivative of Gðu;uxÞ with respect to u. If we further introduce an operator
K ¼ ð1� @2=@x2Þ�1, which is a map L2ðSÞ ! H2ðSÞ [5], the equation can be rewritten as
ut ¼ K
dG
du

� �
x
: ð10Þ
With the Green function:
kðxÞ ¼ coshðx� L½x=L� � L=2Þ
2 sinhðL=2Þ ; ð11Þ
where the bracket ½x� means the largest integer which does not exceed x, the operator K can be expressed in terms of the
convolution
ðKf ÞðxÞ ¼ ðk � f ÞðxÞ ¼
Z L

0
kðx� nÞf ðnÞdn: ð12Þ
The conservation property (6) is summarized in the following theorem, which holds for general Gðu;uxÞ (i.e. not only for the
one defined in (8) but also for other functions). Observe that the variational derivative plays a central role in the proof, and
the concrete form of G is not relevant here.

Theorem 1 (Conservation property of (1)). Suppose uð�; tÞ 2 H3ðSÞ;utð�; tÞ 2 H1ðSÞ, and Gðu;uxÞ is sufficiently smooth with
respect to its arguments. Then,
d
dt

Z L

0
Gdx ¼ 0: ð13Þ
Proof.
d
dt

Z L

0
Gdx ¼

Z L

0

@G
@u

ut þ
@G
@ux

utx

� �
dx ¼

Z L

0

dG
du

ut dxþ @G
@ux

ut

� �L

0
¼
Z L

0

dG
du
K dG

du

� �
x

dx ¼ 0:
In the third equality, the boundary term is dropped due to the periodicity. In the last equality, an identity ðKfx; f Þ ¼ 0 which
holds for any f 2 H1ðSÞ is used. h

The story above makes sense only when uð�; tÞ 2 H3ðSÞ since ðdG=duÞx essentially includes uxxx. However, in order to allow
singular solutions like peakons, an H1ðSÞ-formulation is inevitably required. In the critical CH ðj ¼ 0Þ case, such a form is
given in [10] (see also [13]):
ut þ
1
2

u2 þK u2 þ u2
x

2

� �� �
x
¼ 0; ð14Þ
which makes sense for uð�; tÞ 2 H1ðSÞ. In the present paper, however, we do not adopt this expression, since it seems that the
conservation property of (14) cannot be directly established, and thus (14) is not a convenient in our project. Actually, in
[11], the conservation property of (14) is established by expressing the target H1-solution of (14) as the limit of a series
of energy-conserving H3-solutions of (2) (with j ¼ 0). It seems difficult to do a similar thing in discrete setting.

Instead we propose to employ the following set of weak forms. Recalling the relation (9), we rewrite Eq. (10) to the prob-
lem: Find uð�; tÞ; pð�; tÞ 2 H1ðSÞ such that for any v1;v2 2 H1ðSÞ,
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ðut; v1Þ ¼ ðKpx; v1Þ; ð15Þ

ðp;v2Þ ¼
@G
@u

;v2

� �
þ @G

@ux
; ðv2Þx

� �
: ð16Þ
It is obvious that the solution uð�; tÞ 2 H3ðSÞ that solves (10) also solves this set of weak forms by setting p ¼ dG=du. From the
weak forms (15), (16), the desired conservation property can be successfully deduced as shown in the next theorem. The
deduction can be done completely in an abstract way as in Theorem 1; in this case, however, the key tool is the partial deriv-
atives @G=@u; @G=@ux, instead of the variational derivative dG=du.

Theorem 2 (Conservation property of the weak forms (15), (16)). Suppose uð�; tÞ; pð�; tÞ 2 H1ðSÞ are the solution of the weak
forms (15) and (16). Also assume that G is sufficiently smooth and utð�; tÞ 2 H1ðSÞ. Then it holds
d
dt

Z L

0
Gdx ¼ 0: ð17Þ
Proof.
d
dt

Z L

0
Gdx ¼ @G

@u
;ut

� �
þ @G

@ux
;utx

� �
¼ ðp; utÞ ¼ ðKpx; pÞ ¼ 0: ð18Þ
The first equality is just the chain rule. The second equality follows from (16) with v2 ¼ ut , and the third one from (15) with
v1 ¼ p. h

Remark 3. From the mathematical point of view, it should be asked if and under what conditions the system of the weak
forms (15), (16) has a solution in H1ðSÞ (as noted above, when (10) has a H3ðSÞ solution, it also solves the system; in this
case, only its uniqueness matters). In the present paper, however, we like to leave this open, since the situation drastically
varies depending on the concrete form of Gðu;uxÞ (or equivalently, the parameters j; c in Eq. (1)), and the question itself
seems to be a big mathematical challenge which has not yet been completely solved even in the case of the original PDE
(1). Interested readers may refer [8] which discusses the local well-posedness of (1).
3. Galerkin scheme and its properties

An energy-preserving scheme is constructed and its properties are shown. As seen in the previous section, the partial
derivatives @G=@u; @G=@ux play a central role in proving the conservation property (Theorem 2). This motivates us to employ
the idea of the ‘‘discrete partial derivatives” [25] for constructing an energy-preserving Galerkin scheme. For readers’ con-
venience, the idea is briefly summarized first.

Following [25], we here consider generalized energy functions of the form
Gðu;uxÞ ¼
XM

l¼1

flðuÞglðuxÞ; ð19Þ
where M 2 f1;2; . . .g, and fl; gl are sufficiently smooth real-valued functions. The target energy function (8) in this paper is a
special case of (19), where M ¼ 3; f1 ¼ �ju2=2; g1 ¼ 1; f2 ¼ �u3=2; g2 ¼ 1, and f3 ¼ �cu=2; g3 ¼ u2

x .
Let us denote Galerkin approximate solutions by uðmÞ ’ uðx;mDtÞðDt is the time mesh size). Then ‘‘discrete partial deriv-

atives” of the energy function (19) are defined as follows.

Definition 4 (Discrete partial derivatives [25]). We call the discrete quantities
@Gd

@ðuðmþ1Þ;uðmÞÞ �
XM

l¼1

flðuðmþ1ÞÞ � flðuðmÞÞ
uðmþ1Þ � uðmÞ

� �
glðu

ðmþ1Þ
x Þ þ glðu

ðmÞ
x Þ

2

 !
; ð20Þ

@Gd

@ðuðmþ1Þ
x ;uðmÞx Þ

�
XM

l¼1

flðuðmþ1ÞÞ þ flðuðmÞÞ
2

� �
glðu

ðmþ1Þ
x Þ � glðu

ðmÞ
x Þ

uðmþ1Þ
x � uðmÞx

 !
; ð21Þ
the ‘‘discrete partial derivatives,” which corresponds to @G=@u and @G=@ux, respectively.1

For the function Gðu;uxÞ defined in (8), the concrete forms of the discrete partial derivatives are
@Gd

@ðuðmþ1Þ;uðmÞÞ ¼ �j
uðmþ1Þ þ uðmÞ

2

� �
� ðu

ðmþ1ÞÞ2 þ uðmþ1ÞuðmÞ þ ðuðmÞÞ2

2
� c

ðuðmþ1Þ
x Þ2 þ ðuðmÞx Þ2

4

 !
; ð22Þ
ressions similar to ðf ðaÞ � f ðbÞÞ=ða� bÞ should be interpreted as f 0ðaÞ when a ¼ b.
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@Gd

@ðuðmþ1Þ
x ; uðmÞx Þ

¼ �c
uðmþ1Þ þ uðmÞ

2

� �
uðmþ1Þ

x þ uðmÞx

2

 !
: ð23Þ
It can be easily verified that, corresponding to the continuous chain rule:
d
dt

Z L

0
Gðu; uxÞdx ¼

Z L

0

@G
@u

ut þ
@G
@ux

uxt

� �
dx;
the following discrete chain rule holds (hereafter GðuðmÞ;uðmÞx Þ is abbreviated as GðuðmÞÞ to save space).

Theorem 5 (Discrete chain rule [25]). Concerning the discrete partial derivatives (20) and (21), the following identity holds.
1
Dt

Z L

0
ðGðuðmþ1ÞÞ � GðuðmÞÞÞdx ¼

Z L

0

@Gd

@ðuðmþ1Þ;uðmÞÞ
uðmþ1Þ � uðmÞ

Dt

� �
þ @Gd

@ðuðmþ1Þ
x ;uðmÞx Þ

uðmþ1Þ
x � uðmÞx

Dt

 !( )
dx: ð24Þ
With these discrete partial derivatives, we define an abstract scheme for the weak forms (15 and 16) as follows. Let
S1; S2 2 H1ðSÞ be appropriately chosen trial spaces, and W1;W2 2 H1ðSÞ test spaces. In the subsequent application examples,
they shall be chosen to the standard periodic piecewise linear function space (the so-called ‘‘P1-elements”); for the moment,
however, we would rather like to leave them open in order to keep the flexibility of the scheme.

Scheme 3.1 (Abstract Galerkin scheme for (15, 16)). Suppose that uð0ÞðxÞ is given in S2. Find uðmþ1Þ 2 S2; pðmþ
1
2Þ 2

S1ðm ¼ 0;1;2; . . .Þ such that, for any v1 2W1 and v2 2W2,
uðmþ1Þ � uðmÞ

Dt
;v1

� �
¼ Kðpðmþ1

2ÞÞx;v1

� 	
; ð25Þ

pðmþ
1
2Þ;v2

� 	
¼ @Gd

@ðuðmþ1Þ;uðmÞÞ ;v2

� �
þ @Gd

@ðuðmþ1Þ
x ;uðmÞx Þ

; ðv2Þx

 !
: ð26Þ
The scheme enjoys the next conservation property. The proof can be done analogously to the continuous case.

Theorem 6 (Conservation property of Scheme 3.1). Assume the trial and test spaces S1; S2;W1 and W2 are set such that (i)
ðuðmþ1Þ � uðmÞÞ=Dt 2W2; and (ii) S1 # W1. Then Scheme 3.1 is conservative in the sense that
1
Dt

Z L

0
ðGðuðmþ1ÞÞ � GðuðmÞÞÞdx ¼ 0; m ¼ 0;1;2; . . . :
Proof.
1
Dt

Z L

0
ðGðuðmþ1ÞÞ � GðuðmÞÞÞdx ¼ @Gd

@ðuðmþ1Þ; uðmÞÞ ;
uðmþ1Þ � uðmÞ

Dt

� �
þ @Gd

@ðuðmþ1Þ
x ;uðmÞx Þ

;
uðmþ1Þ

x � uðmÞx

Dt

 !

¼ pðmþ
1
2Þ;

uðmþ1Þ � uðmÞ

Dt

� �
¼ Kðpðmþ1

2ÞÞx;pðmþ
1
2Þ

� 	
¼ 0:
The first equality follows from the discrete chain rule (Theorem 5). The second one is shown by using Eq. (26) with
v2 ¼ ðuðmþ1Þ � uðmÞÞ=Dt (the substitution is allowed by the assumption (i)), while the third one is given by using Eq. (25) with
v1 ¼ pðmþ

1
2Þ (allowed by the assumption (ii)). h

Under the periodic boundary condition (5), it is natural to take S1 ¼ S2 ¼W1 ¼W2. For example, in the finite-element
context, all of them can be chosen to the same P1, P2, or higher-order elements. It is also possible to employ finite-dimen-
sional Fourier (or Chebyshev and so on) space, which results in the so-called Fourier (Chebyshev) Galerkin schemes. In any
cases, the assumptions in Theorem 6 are automatically satisfied as far as S1 ¼ S2 ¼W1 ¼W2, and the resulting schemes be-
come conservative.

Note that Scheme 3.1 makes sense and Theorem 6 holds for any energy function Gðu;uxÞ in the form (19). Thus, they cover
not only the target Eq. (1) but also similar variants that can be written in the variational form (7).

Remark 7. Eq. (10) can also be viewed as a conservation law:
ut � K dG
du

� �
x
¼ 0; ð27Þ
(note that for f 2 H1ðSÞ it holds ðKf Þx ¼ KðfxÞ), and there is another invariant:
d
dt

Z L

0
udx ¼ K dG

du

� �
x

;1
� �

¼ 0: ð28Þ
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The final equality follows from an identity ððKf Þx;1Þ ¼ 0 which holds for any f 2 H1ðSÞ. Scheme 3.1 also conserves this
invariant:
1
Dt

Z L

0
ðuðmþ1Þ � uðmÞÞdx ¼ ðKðpðmþ1

2ÞÞx;1Þ ¼ 0; m ¼ 0;1;2; . . . : ð29Þ
Remark 8. Mathematically, the guarantees of the existence, uniqueness, stability, and convergence of the solutions of
Scheme 3.1 should be given. This issue is, however, closely connected to the solvability of the continuous problem (15)
and (16), which is set outside the scope of this paper as mentioned in Remark 3. Thus we also like to leave such mathematical
studies of Scheme 3.1 (save for the strict conservation properties) as future works. Instead, below we give various numerical
experiments which support the stability and effectiveness of the proposed scheme.
4. Application examples

Scheme 3.1 is tested for the three PDEs mentioned in the introduction.

4.1. Common settings of the experiments

The spatial period ½0; L� is divided into N grids (either equispaced or non-equispaced), whose mesh points are denoted by
xj ðj ¼ 0;1; . . . ;NÞðx0 ¼ 0; xN ¼ LÞ. We then employ the standard periodic piecewise-linear function space Sp # H1ðSÞ over the
mesh; i.e., we set S1 ¼ S2 ¼W1 ¼W2 ¼ Sp in Scheme 3.1. Given the approximation space, the concrete form of Scheme 3.1 is
A
uðmþ1Þ � uðmÞ

Dt

� �
¼ Kpðmþ

1
2Þ; ð30Þ

Apðmþ
1
2Þ ¼ f ðuðmþ1Þ;uðmÞÞ; ð31Þ
where uðmÞ ¼ ðuðmÞðx0Þ; . . . ;uðmÞðxN�1ÞÞT; pðmþ1
2Þ ¼ ðpðmþ1

2Þðx0Þ; . . . ; pðmþ
1
2ÞðxN�1ÞÞT, and f ðuðmþ1Þ;uðmÞÞ is the vector arising from the

right hand side of (26) which in general nonlinearly include uðmþ1Þ and uðmÞ. The matrix A is the standard mass matrix whose
elements are Aij ¼ ð/i;/jÞ, where /i ði ¼ 0; . . . ;N � 1Þ are the standard basis functions of Sp, and Kij ¼ ðKð/iÞx;/jÞ. Note that
the matrices A and K depend only on the approximate space (i.e. the mesh), and can be prepared in prior to the time evo-
lution process. The preparation of the matrix K involves the computation of convolutions, which can be done by hand in
the case of Sp. When more general approximate spaces are required, it is also possible to employ some numerical integrator
with sufficient accuracy. Since the matrix A is invertible, Eqs. (30) and (31) immediately reduce to
A
uðmþ1Þ � uðmÞ

Dt

� �
¼ KA�1f ðuðmþ1Þ;uðmÞÞ: ð32Þ
That is, the computation of the intermediate variable pðmþ1
2Þ can be skipped, and the dimension of the system to be solved is N,

instead of 2N. In what follows, our numerical calculations are based on this expression.
The nonlinear equations (32) should be solved by some iterative method. A convenient way is to use some reliable

numerical Newton library. In the experiments below, the routine imsl_d_zeros_sys_eqn in the IMSL was used.

4.2. The limiting Camassa–Holm equation

Originally, the Camassa–Holm (CH) Eq. (2) only makes sense for j > 0 in physical context, since j corresponds to the crit-
ical shallow water speed that should be strictly positive (see [6]). Mathematically, however, main interest is usually on the
limiting case j ¼ 0, where solitons become peaked. Below we consider this case. The concrete form of Scheme 3.1 then be-
comes as follows. With the function
Gðu;uxÞ ¼ �
u3 þ uu2

x

2
; ð33Þ
which is obtained by setting j ¼ 0; c ¼ 1 in (8), the discrete partial derivatives (22) and (23) become
@Gd

@ðuðmþ1Þ;uðmÞÞ ¼ �
ðuðmþ1ÞÞ2 þ uðmþ1ÞuðmÞ þ ðuðmÞÞ2

2
� ðuðmþ1Þ

x Þ2 þ ðuðmÞx Þ2

4

 !
; ð34Þ

@Gd

@ðuðmþ1Þ
x ;uðmÞx Þ

¼ � uðmþ1Þ þ uðmÞ

2

� �
uðmþ1Þ

x þ uðmÞx

2

 !
: ð35Þ
Note that for the energy function (33) the (continuous) partial derivatives are
@G
@u
¼ �3

2
u2 � 1

2
u2

x and
@G
@ux
¼ �uux;
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and we can see the correspondence between the continuous and discrete ones. Substituting the discrete partial derivatives
into Scheme 3.1, we obtain the concrete form of the scheme, which is then implemented as described in Section 4.1.

For comparison, the following two implicit schemes have been also tested. The Crank–Nicolson scheme:
Fig. 1
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and the implicit Euler scheme:
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Note that, since all of these schemes are based on the same weak forms (15) and (16), the spatial discretization is exactly the
same, and only the temporal discretizations are different.

First, the three schemes are tested on the equispaced mesh with L ¼ 40 and N ¼ 200 (thus Dx ¼ 0:2). The initial data is set
to uðx;0Þ ¼ 5e�jx�xa j þ 2e�jx�xb j, where xa ¼ 13:43 and xb ¼ 26:77, and the problem is integrated in 0 6 t 6 10 with Dt ¼ 0:1.
Since larger peakons are faster, the larger peakon initially centered at xa overtakes the smaller one at xb as time passes.
Fig. 1 shows the numerical results obtained by the three schemes. According to the figure, both the proposed conservative
scheme and the Crank–Nicolson scheme seem to correctly track the overtaking phenomenon (note that since now the peri-
odic boundary condition is applied, the outgoing peakons come back to the interval from the left boundary). On the other
hand, in the implicit Euler case, although the computation itself is stable, the peakons gradually become flattened. Fig. 2
shows the evolution of the energy

R L
0 GðuðmÞÞdx; the left figure shows the evolution near the starting time, and the right figure

the overall profile. As suggested in the wave pattern in Fig. 1, we observe strong energy dissipation in the case of the implicit
Euler scheme (see left figure); the energy rapidly tends to zero. Although in Fig. 1 the results by the proposed conservative
scheme and the Crank–Nicolson scheme look quite similar, the energy profiles are considerably different (see right figure). In
the proposed conservative scheme, the energy is strictly conserved to the machine accuracy, while in the Crank–Nicolson
scheme it drifts.

Next, in order to check the long-time stability, the problem is solved for 0 6 t 6 70 with the time mesh size Dt ¼ 0:02 and
the number of spatial grid points N ¼ 400ðDx ¼ 0:1Þ. With these parameters, the larger peakon goes round the spatial inter-
val about ten times. The conservative scheme successfully integrates the problem with the energy strictly kept (Fig. 3 (left)
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and Fig. 4). In the Crank–Nicolson case, the energy is nearly conserved in the early stage 0 6 t 6 20; the energy periodically
oscillates and stays around the exact value. As time passes, however, the oscillation becomes irregular ð20 6 t 6 50Þ, and
then completely unstable ð50 6 t 6 70Þ. This instability can be observed in the wave pattern in Fig. 3, where the peakons
in the Crank–Nicolson case are completely broken at t ¼ 70. For t P 70, it turns out that the numerical Newton solver does
not work in the Crank–Nicolson scheme, and it is impossible to continue the computation. This result strongly suggests that
the conservative scheme is in fact more reliable than the standard Crank–Nicolson scheme.

The third experiment is to check if the proposed scheme works on non-equispaced grids as well. To this end, the CH is
solved on the spatial interval ½0;200� with the grid shown in Fig. 5 ðN ¼ 200Þ, and with the triangle shaped initial data
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Fig. 4. Evolution of the energies in the long-time computation.
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uðx;0Þ ¼
x� xc þ 20 if x 2 ½xc � 20; xcÞ;
�ðx� xcÞ þ 20 if x 2 ½xc;20Þ;
0 otherwise;

8><
>:
where xc ¼ 80:5.
Fig. 6 shows the numerical results by the three schemes, where the time mesh width is set to Dt ¼ 0:05. For comparison, a

result by a standard numerical method on finer equispaced mesh ðN ¼ 2000Þ, marked as ‘‘FD/RK” in the figures, is also pre-
sented. The scheme is obtained by discretizing space variable by the standard central finite-differences (with second-order
accuracy), and then by discretizing time stepping by the standard 4th-order Runge–Kutta method. The time-stepping width
is chosen considerably small ðDt ¼ 0:0005Þ such that the result is accurate enough as a substitute for the unknown exact
solution. As the solution suggests (Fig. 6, bottom-right), in this problem setting the initial triangle shaped data soon splits
into a number of peakons. The splitting mainly occurs at the center of the interval, which is the reason why the grid is chosen
to be dense at the center. The result by the implicit Euler scheme (top-right) again exhibits strong dissipation, which can be
also observed in the energy profile (Fig. 7). The result by the proposed conservative scheme (Fig. 6, top-left) is similar to the
accurate result by FD/RK, with the excellent energy conservation profile (Fig. 7). Compared to this result, even with consid-
erably fine mesh sizes, the energy in FD/RK scheme monotonically moves apart from the exact value; this means that how-
ever mesh is refined the FD/RK method is not so reliable that it can be used as an integrator for long-time computations. The
shape of the peakons in Crank–Nicolson case seems to be quite similar to the conservative and FD/RK cases (Fig. 6, bottom-
left). The energy profile, however, behaves dreadfully, where the error exceeds 10% in magnitude. In this example, the peak-
ons are quite sharp and high, and the slight error in the shapes of peakons is magnified as the big error in the energy.

4.3. The Dai equation

Scheme 3.1 is tested in the case of the Dai equation (3), which is an example of (1) with j ¼ 0; c 2 R. This is quite similar
to the limiting CH case, but now we have a freedom in the choice of c. As described before, soliton solutions are expected to
be smooth when c < 1 and become ‘‘cusped” when c > 1. Below we have tested two cases: c ¼ 0:5 and c ¼ 1:4. The energy
function is
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Gðu;uxÞ ¼ �
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and accordingly the discrete partial derivatives are
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We test Scheme 3.1 and the Crank–Nicolson scheme. The latter is constructed in a similar manner as in the previous section.
First, the case of c ¼ 0:5 is considered. With this parameter, solitons are smooth and the computation is rather easy. In

order to check the long-time stability of the schemes, the problem is solved in a long interval 0 6 t 6 500 with the temporal
mesh size Dt ¼ 0:1. The initial data is uðx;0Þ ¼ 5sechðx� 5Þ þ 2sechðx� 15Þ. The length of the spatial interval L is set to 40,
for which the equispaced grid with N ¼ 200 is employed (i.e. Dx ¼ 0:2). Fig. 8 shows the evolution of the numerical solutions.
The computation proceeds quite stably as expected, and the shapes of the solitons are successfully preserved in both
schemes, although the phase speeds of the solitons are different. Fig. 9 shows the evolution of the energies. In the conser-
vative scheme, the energy is strictly kept. In the Crank–Nicolson scheme, the energy oscillates, but stays near the exact value.

Next, the results with c ¼ 1:4 are presented. The equispaced grid on the spatial interval ½0;40� with N ¼ 200 or 400 is
used, and the problem is solved in 0 6 t 6 10 with the time mesh size Dt ¼ 0:1. The initial data is set to the same one as
in the limiting CH case, i.e., uðx; 0Þ ¼ 5e�jx�xa j þ 2e�jx�xb j with xa ¼ ð200=3þ 1=2ÞDx and xb ¼ ð400=3þ 1=2ÞDx. Fig. 10 shows
the numerical solutions of N ¼ 400, and Fig. 11 the evolution of the energies in both N ¼ 200 and 400 cases. From Fig. 10,
both schemes succeed in catching the peaked solutions (although numerically it is difficult to judge if the solutions are really
‘‘cusped” rather than ‘‘peaked”). Comparing Fig. 11 (left) and Fig. 9, we notice that with the same mesh ðN ¼ 200Þ the energy
deviation in the Crank–Nicolson scheme becomes much larger when the solutions become singular, although it can be im-
proved by refining the spatial mesh (Fig. 11, right). In any case, the conservative scheme seems to be safer when we deal such
singular solutions.
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4.4. The BBM equation

In this section Scheme 3.1 is tested in the case of the BBM equation (4). The energy function is
Gðu;uxÞ ¼ �
u3 þ u2

2
; ð43Þ
and accordingly the discrete partial derivatives are
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Fig. 12. Two-soliton in the BBM equation; (left) the conservative scheme, (right) the Crank–Nicolson scheme.
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The equation is considered over the spatial domain [0,40] using the equispaced mesh with the number of grid points
N ¼ 100. Then the problem is integrated in 0 6 t 6 20 with the time mesh size Dt ¼ 0:25. The initial data is set to
uðx;0Þ ¼ c1 sech2ð0:35ðx� 15ÞÞ þ c2 sech2ð0:25ðx� 25ÞÞ, where c1 ¼ 9� 0:72=ð1� 0:72Þ; c2 ¼ 9� 0:52=ð1� 0:52Þ (see [17]
for this initial data). The conservative scheme and the Crank–Nicolson scheme are tested. Fig. 12 shows the numerical solu-
tions, and Fig. 13 the evolution of the energies. Both schemes successfully capture the propagation of the two-soliton. The
conservative scheme strictly preserves the energy, while in the Crank–Nicolson scheme the energy oscillates around the ex-
act value.

5. Concluding remarks

In this paper a conservative Galerkin scheme for a class of nonlinear dispersive PDEs such as the Camassa–Holm equation
has been proposed. The effectiveness of the scheme has been confirmed by numerical experiments. We here would like to
emphasize that the proposed scheme has an additional welcome feature that the conservation property would not be lost
even if time mesh size is changed during the time evolution process. This can be easily understood by observing the facts
that the scheme is a one-step method and that Theorem 6 holds for any Dt (as far as the scheme has a solution). This allows
us to incorporate some adaptive time-stepping technique in the scheme in order to decrease computational cost, or to utilize
the so-called composition technique (see, for example, [4]) in order to increase the temporal accuracy. This point should be
another advantage of the proposed scheme over other standard numerical schemes, such as the Crank–Nicolson scheme em-
ployed in this paper. In the numerical experiments, the Crank–Nicolson scheme also showed good performance (if not the
same level as the proposed scheme), but this might be caused by the time-symmetry of the scheme; it is generally known
that, for time-symmetric differential equations, time-symmetric schemes quite often show far better behaviors than ex-
pected. However, as soon as some non-uniform time-stepping is introduced, the time-symmetry is destroyed, and accord-
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ingly the good performance would be lost. In fact, we did some experiments and found that the near-conservation of the
energy (see, for example, Fig. 9) dissolved under such circumstances.

Our future works include the followings. First, theoretical aspects of the proposed scheme other than the aimed conser-
vation property, such as stability and convergence, are to be investigated. Second, it is also possible to construct a linearly-
implicit conservative scheme for the target Eq. (1) by employing the linearization technique in [26]. This will be reported
elsewhere soon. Last but not least, the proposed scheme should be carefully compared with other schemes such as
[9,21,22,27,29]. This can be done in two different contexts. In the context of structure-preserving algorithms, comparison
with the multi-symplectic schemes [9] seems the most interesting topic, since for Hamiltonian PDEs it has been an open
question which of multi-symplectic, symplectic, and Hamiltonian-conserving methods is generally the best (on this issue,
a comparison can be found in [2], which dealt with the Korteweg-de Vries equation). In more general context, comparison
with recent efficient algorithms (which are not necessarily structure-preserving) are also desired; in particular, it is an inter-
esting topic to find out how the proposed scheme compares with the beautiful result by Xu–Shu [29], where a discontinuous
Galerkin (DG) scheme is proposed. In this work the authors have also shown that the DG scheme is quite efficient, and is
stable in that the L2-stability of its semidiscrete version has been established. They also gave various numerical examples
that prove the DG scheme can in fact capture complex behavior of the Camassa–Holm (CH) solutions. The comparison of
these schemes should be quite carefully done, since the two schemes aim at slightly different goals. The DG scheme aims
at and in fact succeeds in extremely local and stable discretization of the CH equation; but at the same time, the good L2-
stability property (roughly, ðd=dtÞ

R L
0 ðu2 þ u2

x Þ=2dx 6 0) implies that dissipation can occur and solution can get flattened
(cf. the implicit Euler scheme in Fig. 1). On the other hand, the proposed scheme more focuses on the qualitative behavior
of solutions, and in fact in many examples in this paper it has been shown that solutions tend to keep its shape even in long-
time computations. But as its price it can fall behind the DG scheme in terms of stability. Investigating these trade-off de-
serves serious consideration, and the present authors like to report it elsewhere in the near future.
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